Randschichthärteverfahren
Ziel ist es, dem Werkstoff eine harte und verschleißbeständige Oberfläche zu verleihen. Die chemische Zusammensetzung der Randschicht wird bei diesen Verfahren nicht verändert, wohl aber das Gefüge. Die oberflächennahe Schicht wird durch eine intensive Energieeinwirkung auf Härtetemperatur erwärmt (austenitisiert). Für die Verfahren des Randschichthärtens (außer Tauchhärten) ist es dabei kennzeichnend, dass mit hoher Geschwindigkeit erwärmt und unmittelbar anschließend abgeschreckt wird. Es muss eine ausreichende Austenitisierung sichergestellen werden. Das Randschichthärten kann für alle Eisenwerkstoffe, die einen Mindestkohlenstoffgehalt von 0,3% und eine Austenitumwandlung aufweisen, angewandt werden. Hierzu zählen beispielsweise die unlegierten Baustähle, Vergütungsstähle, Werkzeugstähle und der Stahlguss. Der maximale Kohlenstoffgehalt sollte 0,75 % jedoch nicht überschreiten, da sonst die Rissneigung sowie die Gefahr der Bildung von Restaustenit zunimmt.
Nach dem angewandten Wärmverfahren unterscheidet man folgende Randschichthärteverfahren: Tauchhärten, Flammhärten, Induktionshärten, Laserstrahlhärten, Elektronenstrahlhärten
Die maximal erreichbare Oberflächenhärte ist im Wesentlichen nur von der Menge des im Austenit gelösten Kohlenstoffs, also vom Kohlenstoffgehalt des Stahls sowie von den Austenitisierungsbedingungen (Härtetemperatur und Aufheizgeschwindigkeit) abhängig. Im Gegensatz zur Oberflächenhärte, die im Wesentlichen von der Menge des im Austenit gelösten Kohlenstoffs abhängt, nimmt mit zunehmendem Gehalt bestimmter Legierungselemente wie Mn, Cr, Mo, Ni und V die Härte in einer bestimmten Tiefe, die Einhärtungstiefe, zu.