Schnelles Screening für potenzielle neue Katalysatoren| WOTech Technical Media

Schnelles Screening für potenzielle neue Katalysatoren

Der Erfolg der Energiewende hängt stark von effizienten Elektrokatalysatoren ab, zum Beispiel für Brennstoffzellen oder CO2-Reduktion. Spezielle Legierungen aus fünf oder mehr Elementen sind vielversprechende Kandidaten. Um in der Überfülle möglicher Kombinationen schnell screenen zu können, welche davon es sich zu optimieren lohnt, hat ein Forschungsteam der Ruhr-Universität Bochum (RUB) ein Konzept entwickelt. Es hilft, das Potenzial einer möglichen Legierung direkt zu erkennen.

Die Hoffnungen der Forscherinnen und Forscher für neue Katalysatoren aus günstigen und verfügbaren Elementen ruhen auf sogenannten Mischkristallen, auch Hochentropielegierungen genannt. Sie bestehen aus fünf oder mehr Elementen, die gleichmäßig miteinander vermischt sind, und deren vielfältige, komplexe Wechselwirkungen feine Anpassungen der wichtigen Eigenschaften ermöglichen. Nicht nur die Eigenschaften der einzelnen Elemente, sondern vor allem ihrer Interaktion sind entscheidend. Dadurch bieten sich vielfältige, anderweitig nicht erreichbare Möglichkeiten, um gleichzeitig Preis und Performance für mögliche Anwendungen zu optimieren, so Prof. Dr. Wolfgang Schuhmann vom Zentrum für Elektrochemie der RUB.

Noch fehlt es jedoch an grundlegenden Erkenntnissen über die erst kürzlich entdeckte neue Katalysatorklasse. Welche Informationen können Messungen liefern, um gezielte Fortschritte in der Katalysatorentwicklung zu machen? Wie hilft dies, um aus den nahezu unendlichen Kombinationsmöglichkeiten die richtige zu finden? Wie wirkt sich der Austausch eines Elementes auf die Eigenschaften aus?

Ergebnisse genauer deuten

Tobias Löffler, Doktorand der Elektrochemie, hat mit ein Konzept erarbeitet, das es erlaubt, die Zusammenhänge zwischen Auswahl der Elemente, theoretischen, aktivitätsbestimmenden Eigenschaften und tatsächlich messbaren Größen zu verstehen. Da sich die Hochentropielegierungen in allen diesen Punkten von herkömmlichen Elektrokatalysatoren unterscheiden, ist dieses Verständnis grundlegend für experimentelle Fortschritte.

So stehen die Forscher vor der Herausforderung, dass nicht nur die Kombination der Elemente, sondern auch deren Mengenverhältnis untereinander entscheidend ist und jede Abweichung veränderte Eigenschaften aufweist. Sie zeigen, wie man Experimente mit einer Legierung aus zum Beispiel fünf gleichen Teilen jedes Elements deuten kann, um die Elementkombination als potenziell aktiv zu erkennen. So können die Forscher schnell erkennen, ob sich eine Optimierung der Mengenverhältnisse der Elemente untereinander lohnt. Damit können sie den Screening-Aufwand für mögliche Materialzusammensetzungen auf einen Bruchteil reduzieren, ohne vielversprechende Kandidaten zu übersehen. Ohne dieses Wissen könne es schnell passieren, dass man mit herkömmlichen Auswertungen Kombinationen aussortiert, obwohl diese mit Optimierung der Elementverhältnisse hochinteressant werden können. „Darüber hinaus bildet dieses Konzept einen Grundstein für ein Verständnis der komplexen Wirkweise dieser Materialklasse, das hilft, die möglichen Stellschrauben besser zu verstehen und somit vielversprechende Designkonzepte ableiten zu können.“

Forscherinnen und Forscher motivieren

Diese konzeptionellen Überlegungen testeten die Forscherinnen und Forscher mit ausgewählten Legierungen anhand der für Brennstoffzellen relevanten Sauerstoffreduktion. Dabei konnten sie exemplarisch zeigen, in welchen Fällen ein Austausch oder Hinzufügen eines Elementes zu einer bestehenden Elementkombination einen positiven Effekt hat und umgekehrt. Sie konnten auch Kombinationen identifizieren, die sich für eine weitere Optimierung eignen.

Für die Materialsynthese bedeutet das eine immense Aufwands- und Kostenersparnis, so Prof. Dr. Alfred Ludwig, Inhaber des Lehrstuhls für Neue Materialien und Grenzflächen an der RUB. Alle möglichen Elementverhältnisse einer aus fünf Elementen bestehenden Legierung herzustellen und diese zu analysieren, ist eine immense Herausforderung. Die Wissenschaftler hoffen, durch die Beseitigung elementarer Hürden den Zugang zu diesem hochaktuellen und technologisch relevanten Feld weiter zu erleichtern und mehr Forscherinnen und Forscher zu motivieren, ihre jeweiligen Fähigkeiten einzubringen.

Originalpublikation: Tobias Löffler, Alan Savan, Hajo Meyer, Michael Meischein, Valerie Strotkötter, Alfred Ludwig, Wolfgang Schuhmann: Design of complex solid solution electrocatalysts by correlating configuration, adsorption energy distribution patterns and activity curves, in: Angewandte Chemie International Edition, 2019. DOI:10.1002/ange.201914666

www.rub.de

Aktuelle Onlineartikel