Recycling der nächsten Generation

Fraunhofer-Experten arbeiten an einem Verfahren, um aus altem Flachglas hochwertiges, farbstofffreies Glas zu gewinnen
Etwa 70 Milliarden Tonnen Rohstoffe werden jährlich weltweit gewonnen. Das ist doppelt soviel wie Ende der 1970er Jahre. Tendenz weiter steigend – und das bei endlichen Ressourcen. Ein Weg, um auch künftig genügend Werkstoffe für neue Waren zur Verfügung zu haben, ist konsequentes Recycling. Im Übermorgen-Projekt Molecular Sorting arbeiten Fraunhofer-Forscher an der Kreislaufwirtschaft der nächsten Generation.
Etwa 200 Kilogramm Rohstoffe pro Kopf und Tag verbrauchen die Deutschen laut Umweltbundesamt. Damit stehen wir weltweit an der Spitze. Das schadet nicht nur der Umwelt – es ist auch gefährlich für unsere internationale Wettbewerbsfähigkeit. Als rohstoffarmes Land muss Deutschland auf einen besonders schonenden Umgang mit Ressourcen setzen. Neue und effiziente Recyclingverfahren sind eine Möglichkeit, sich unabhängiger zu machen vom Import teurer und knapper Rohstoffe. Wichtige Grundlagen für das konsequente Wiederverwerten und das Produzieren in Kreisläufen haben Fraunhofer-Experten in dem Übermorgen-Projekt Molecular Sorting for Resource Efficiency gelegt.
Die Trennprozesse erfolgen dabei erstmals auf der kleinsten erforderlichen Stufe, das heißt, man geht bis auf die molekulare oder sogar atomare Ebene hinab, so der Koordinator des Projekts, Professor Jörg Woidasky vom Fraunhofer-Institut für Chemische Technologie ICT in Pfinztal bei Karlsruhe. Ein Beispiel ist die mikrobielle Erzlaugung, die am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart zur Anwendungsreife entwickelt wird. Damit lassen sich auch kleine Mengen Edelmetall oder seltenen Erden wiedergewinnen. Die Forscher nutzen Mikroorganismen, um unlösliche Metallverbindungen in Erzen, in Verbrennungsschlacken oder in Althölzern, die mit Metallsalzen getränkt wurden, in wasserlösliche Salze umzuwandeln. Die gelösten Metalle lassen sich anschließend mit speziellen Polymeren binden und so selektiv aus der Lösung entfernen. In einer dritten Stufe werden die Metalle abgetrennt.
Experten vom Fraunhofer-Institut für Silicatforschung ISC in Würzburg arbeiten an einem Verfahren, um aus altem Flachglas hochwertiges, farbstofffreies Glas zu gewinnen. Ultra-Weißglas ermöglicht eine maximale Lichtdurchlässigkeit und wird deshalb etwa in der Photovoltaik, in Glasfaserkabeln, oder Displays eingesetzt. Sind Fremdatome – wie etwa Eisen – im Glas, sinkt seine Durchlässigkeit. »Die Wachstumsdynamik gerade in der Photovoltaik ist so groß, dass weder die natürlichen eisenfreien Rohstoffquellen, noch die Recyclingmenge etwa von »ausgedienten« PV-Modulen ausreichen, um den Bedarf an hochtransparentem Flachglas der kommenden Jahrzehnte zu decken«, sagt Dr. Jürgen Meinhardt vom ISC. Eine alternative Rohstoffquelle könnte konventionelles Flachglas sein. Allerdings ist der Eisengehalt des Glases zu hoch. Die Forscher entwickeln ein Verfahren, mit dem Eisenatome direkt aus der flüssigen rund 1500 °C heißen Schmelze herausgeholt werden können.
Aber nicht nur aus festen Abfällen lassen sich Wertstoffe gewinnen. Auch die Abgase von Müllverbrennungsanlagen enthalten ebenfalls Rohstoffe. Um diese zu anzureichern, entwickeln die Forscher des Fraunhofer-Instituts für Keramische Technologien und Systeme IKTS in Dresden spezielle keramische Filter, an denen bestimmte Inhaltsstoffe im Abgas bei Temperaturen von mehr als 850 °C zunächst selektiv abgeschieden und anschließend wiedergewonnen werden – beispielsweise Germanium, Zink und auch Phosphor.
Aber eignen diese entwickelten Methoden auch tatsächlich für ein sich stark verändernden Marktumfeld? Das haben die Molecular-Sorting-Partner in einer Studie untersucht. Ihr Fazit fällt positiv aus. Das Recycling auf atomarer Ebene lässt sich mit hoher Wahrscheinlichkeit künftig sinnvoll anwenden. Nicht nur, wenn es politisch gefördert wird, sondern auch als wirtschaftlich unabhängiges Geschäftsmodell.
http://www.molecular-sorting.fraunhofer.de
Aktuelle Onlineartikel
-
29. 04. 2025 MIT macht Keramik und Glas jetzt dehnbar
-
28. 04. 2025 Die ultraschnelle elektrische Aufladung von Flüssigkeiten erforschen
-
28. 04. 2025 NMI, TU Darmstadt und Black Drop entwickeln verbesserte Biotinte
-
28. 04. 2025 Schutzschild aus Nanopartikeln für langlebigere Leuchtstoffe in der Hightech-Anwendung
-
28. 04. 2025 Kautschukmischungen mit alternativen Antioxidantien – neues Projekt
-
25. 04. 2025 Wie mit Hilfe von Methan und CO2 der Plastikverschmutzung begegnet werden kann