Zweidimensionale Kohlenstoff-Netzwerke – Graphdiin als funktionelles Speichermaterial für Lithiumionen| WOTech Technical Media

Zweidimensionale Kohlenstoff-Netzwerke – Graphdiin als funktionelles Speichermaterial für Lithiumionen

Lithiumionen-Akkus enthalten in der Regel eine Anode aus graphitischem Kohlenstoff. Wissenschaftler haben jetzt das Nano-Kohlenstoffgewebe Graphdiin, ein neuartiges zweidimensionales Kohlenstoffnetzwerk, auf seine Eignung für Batterien untersucht. Graphdiin ist genauso flach und dünn wie die atomlagendünne Graphitvariante Graphen, ist aber poröser und lässt sich elektronisch anpassen. In der Zeitschrift Angewandte Chemie beschreiben die Forscher eine einfache Synthese von modifiziertem Graphdiin aus maßgeschneiderten molekularen Vorstufen.

Das häufigste Anodenmaterial in Lithiumionen-Akkus ist Kohlenstoff. Durch seine Schichtstruktur können Lithiumionen während der Lade-Entlade-Zyklen in die Zwischenräume der Schichten eindringen und wieder heraustreten, sein zweidimensionales hexagonales Kristallgitter leitet sehr gut Strom, und sein stabiles, poröses Netzwerk sorgt für ein effizientes Eindringen des Elektrolyten. Schwierig ist allerdings eine genaue Abstimmung von strukturellen und elektrochemischen Eigenschaften, da der Fertigungsprozess aus polymeren Kohlenstoffmaterialien nicht sehr zielgenau abläuft.

Im hybriden zweidimensionalen Kohlenstoffnetzwerk von Graphdiin verbrücken jeweils zwei Acetyleneinheiten (das Diin im Namen) hexagonale Kohlenstoffringe. Graphdiin wurde als Trennmembran für Isotope oder Helium vorgeschlagen. Aufgrund seiner ausgeprägten elektronischen Eigenschaften und seiner netzartigen Struktur sollte es sich jedoch auch für elektrochemische Anwendungen eignen. Changshui Huang von der Chinesischen Akademie der Wissenschaften in Peking und seine Kollegen untersuchten die Speicherfähigkeit für Lithium und die elektrochemischen Eigenschaften von maßgeschneidertem, elektronisch angepasstem Graphdiin.

Für die Synthese des modifizierten Graphdiins trugen die Wissenschaftler molekulare Vorstufen auf eine Kupferfolie auf, wo sich durch Selbstorganisation geordnete geschichtete Nanostrukturen aus Graphdiin herausbildeten. Funktionelles Graphdiin stellten die Forscher aus Vorstufen her, die funktionelle Gruppen mit interessanten elektronischen Eigenschaften enthielten.

Wurden dabei elektronenziehende Gruppen eingesetzt, verengte sich die Bandlücke von Graphdiin und die Leitfähigkeit erhöhte sich, berichteten die Autoren. Besonders effektiv war dabei die Cyanogruppe. Cyanmodifiziertes Graphdiin wies als Anodenmaterial ausgezeichnete Speicherkapazität für Lithium aus und blieb nach Angabe der Autoren Tausende von Lade-Entlade-Zyklen stabil.

Wurde das Graphdiin hingegen mit einer sperrigen funktionellen Gruppe (Methylgruppe) ausgestattet, die in das Graphdiinnetzwerk Elektronen hineindrückte, vergrößerte sich offenbar der Abstand der Schichten und das brüchigere Material vertrug nur wenige Lade- und Entladezyklen. Die Autoren verglichen die beiden modifizierten Graphdiinvarianten auch mit einer leeren Version, bei der nur Wasserstoff die Position der funktionellen Gruppen im Netzwerk besetzte.

Mit ihrem Syntheseverfahren für Graphdiin aus modifizierbaren Vorstufen lassen sich sehr gut funktionelle zweidimensionale Architekturen für Batterien, Kondensatoren und andere elektrokatalytische Bauteile fertigen, glauben die Autoren.

Originalpublikation: Angewandte Chemie, Changshui Huang, The Qingdao Institute of Bioenergy and BioprocessTechnology, Chinese Academy of Science (China)

https://doi.org/10.1002/ange.202004454

Aktuelle Onlineartikel

Top