Eine außergewöhnliche Kobaltverbindung für Atomlagenabscheidung

Eine neuartige, sehr vielseitige Kobaltverbindung hat ein Forschungsteam der Ruhr-Universität Bochum (RUB) und der Carleton University in Ottawa hergestellt. Die Moleküle der Verbindung sind stabil, räumlich sehr kompakt und haben ein geringes Molekulargewicht, sodass sie für die Herstellung von Dünnschichten verdampft werden können. Das macht sie interessant für Anwendungen zum Beispiel im Bereich der Batterie- oder Akkuherstellung. Aufgrund ihrer besonderen Geometrie verfügt die Verbindung zudem über eine sehr außergewöhnliche Spinkonfiguration von ½. Eine solche Kobaltverbindung war zuletzt 1972 beschrieben worden.
Die wenigen bekannten Kobalt(IV)-Verbindungen sind bei hohen Temperaturen instabil und sehr empfindlich gegenüber Luft und Feuchtigkeit. Das erschwert ihre Verwendung als Studiensysteme oder in der Materialsynthese, so der Erstautor David Zanders von der Bochumer Arbeitsgruppe Chemie Anorganischer Materialien von Prof. Dr. Anjana Devi. Im Rahmen seiner binationalen Promotion, die über einen Cotutelle-Vertrag zwischen der RUB und der Carleton University besiegelt wurde, entdeckte er mit seinen kanadischen Kollegen Prof. Dr. Seán Barry und Goran Bačić eine Kobalt(IV)-Verbindung, die über eine ungewöhnliche Stabilität verfügt.
Mit theoretischen Studien konnte das Team darlegen, dass eine nahezu rechtwinklige Einbettung des zentralen Kobaltatoms in ein tetraedrisch angeordnetes Umfeld aus zusammenhängenden Atomen – sogenannten Liganden – der Schlüssel zur Stabilisierung der Verbindung ist. Diese besondere geometrische Ordnung innerhalb der Moleküle der neuen Verbindung erzwingt außerdem den außergewöhnlichen Elektronenspin des zentralen Kobaltatoms. „Unter diesen besonderen Umständen kann der Spin nur ½ sein“, verdeutlicht David Zanders. Eine Kobaltverbindung mit diesem Spinzustand und ähnlicher Geometrie wurde seit fast 50 Jahren nicht mehr beschrieben.
Mit einer Reihe von Experimenten zeigte das Team darüber hinaus, dass die Verbindung – untypisch für Kobalt(IV) – eine hohe Flüchtigkeit besitzt und bei Temperaturen bis 200 Grad Celsius nahezu ohne Zersetzung verdampft werden kann.
Ein aussichtsreicher Kandidat für dünnste Schichten
Einzelne Moleküle der Verbindung docken nach der Verdampfung auf eine kontrollierbare Art auf Oberflächen an. Nach Seán Barry ist damit das wichtigste Kriterium einer potenziellen Vorstufe für die Atomlagenabscheidung erfüllt. Dieses Verfahren wird in der Industrie bei der Materialherstellung immer wichtiger, und unsere Kobalt(IV)-Verbindung ist die erste ihrer Art, die dafür geeignet ist. Da den hochvalenten Oxiden und Sulfiden des Kobalts beispielsweise in der modernen Batterie- und Mikroelektronik großes Potenzial zugeschrieben wird, ist diese Entdeckung umso reizvoller. Die Elektroden in wiederaufladbaren Batterien verlieren mit der zunehmenden Anzahl an Lade- und Entladevorgängen an Stabilität, weswegen die Forschung nach stabileren und somit langlebigeren Materialien dafür sucht. Auch die Verwendung neuer Methoden zur ihrer Herstellung steht im Fokus.
Diese binationale Zusammenarbeit beruht auf der Eigeninitiative von David Zanders und hat Einfallsreichtum sowie sich ergänzende Expertise der Chemiker aus Bochum und Ottawa kombiniert. Das hat etwas Unerwartetes hervorgebracht und war der Schlüssel zum Erfolg, so fasst Prof. Dr. Anjana Devi zusammen.
Förderung: Die Arbeiten wurden von der Deutschen Forschungsgemeinschaft im Rahmen des Sonderforschungsbereichs/Transregios 87 sowie vom Natural Sciences and Engineering Research Council of Canada im Projekt RGPIN-2019-06213 gefördert. David Zanders erhielt ein Kekulé-Stipendium des Verbands der Chemischen Industrie sowie ein Einjahres-Stipendium des Deutschen Akademischen Austauschdienstes.
Originalveröffentlichung: David Zanders, Goran Bačić, Dominique Leckie, Domilola O. Odegbesan, Jeremy Rawson, Jaseon D. Masuda, Anjana Devi, Seàn T. Barry: A rare low‐spin Co(IV) Bis(β‐silyldiamide) with high thermal stability: Steric enforcement of a doublet configuration, in: Angewandte Chemie International Edition, 2020, DOI: 10.1002/anie.202001518
Aktuelle Onlineartikel
-
02. 07. 2025 Vom Reaktordesign bis zum gedruckten Schnitzel – KIT kürt die besten Innovationen
-
02. 07. 2025 Kompostierbares Einmalgeschirr
-
01. 07. 2025 Energieverbrauch mit Phasenwechselmaterialien reduzieren
-
01. 07. 2025 Neues Produktionsverfahren für Metall-Polymer-Stromkollektoren
-
27. 06. 2025 Neue Aluminiumlegierungen für die Wasserstoffwirtschaft
-
24. 06. 2025 VOA gestaltet ESTAL-Kongress 2025 in Griechenland mit