Atomares Design mit Wasser| WOTech Technical Media

Atomares Design mit Wasser

Ein zentrales Element bei so verschiedenen technologischen Fragestellungen wie dem Korrosionsschutz, Batteriematerialien, oder der Herstellung von Wasserstoff mittels Elektrolyse oder Brennstoffzellen ist die Kontaktstelle zwischen leitfähigen Elementen, dem Elektrolyt und der festen Elektrode an der eine Spannung angelegt wird.

Trotz ihrer Bedeutung für eine Vielzahl von Schlüsseltechnologien, weiß man bisher kaum etwas über den atomaren Aufbau der Grenzfläche zwischen Elektrode und Elektrolyten. Insbesondere die atomare Struktur der festen Elektrode hat entscheidenden Einfluss auf die chemischen Reaktionen, die an der Grenzfläche stattfinden. Wenn es gelingt die Struktur der Oberfläche gezielt auf der Skala einzelner Atome zu modifizieren, würde sich ein völlig neuer Ansatz eröffnen, um die zentralen chemischen Reaktionen gezielt zu beeinflussen.

Wissenschaftler in der Abteilung Computergestütztes Materialdesign am Max-Planck-Institut für Eisenforschung sind diesem Ziel ein großes Stück näher gekommen. Im Rahmen des Exzellenzclusters RESOLV, einer gemeinsamen Forschungsinitiative von sieben Forschungsinstituten im Ruhrgebiet, wurde mit Hilfe hochgenauer quantenmechanischer Methoden und mit leistungsfähigen Supercomputern ein unerwartetes Phänomen gefunden. Bisherige Untersuchungen von metallischen Oberflächen zeigten immer wieder, dass sich die Struktur einer Oberfläche beim Kontakt mit einem flüssigen Elektrolyten kaum verändert. Umso erstaunter waren die Wissenschaftler, als sie auf dem Computer eine Halbleiteroberfläche in Kontakt mit dem Elektrolyten brachten. Dr. Mira Todorova, Leiterin der Gruppe Elektrochemie und Korrosion und ihr Team waren völlig überrascht als sich Strukturen bildeten, die ohne den Kontakt mit Wasser instabil sind und auch nicht beobachtet werden. Mit ihren Simulationsmethoden fanden sie nicht nur ein völlig neuartiges und unerwartetes Phänomen, sie konnten auch den zugrundeliegenden Mechanismus identifizieren. Dies eröffnet völlig neue Möglichkeiten Oberflächen mit atomarer Präzision zu gestalten und einzustellen.

Die Untersuchungen liefern nicht nur neue Einblicke in Zukunftstechnologien, sondern bringen auch eine völlig neue Sichtweise auf eine in der Geologie intensiv diskutierte Frage: Die Ursache der erhöhten Rissbildung in Mineralien, wenn sie einer feuchten Umgebung ausgesetzt sind.

Originalpublikation: S. Yoo, M. Todorova and J. Neugebauer, Selective solvent-induced stabilization of polar oxide surfaces in an electrochemical environment, Physical Review Letters 120, 066101 (2018), DOI: 10.1103/PhysRevLett.120.066101.

https://www.mpie.de

Aktuelle Onlineartikel

Top