Nachhaltige Zinkionenbatterien für die Energiewende

Werkstoffe 05. 11. 2023
  • Autoren dieses Artikels
  • 1122x gelesen

Stationäre Energiespeicher zur Entlastung des öffentlichen Stromnetzes bei auftretenden Lastspitzen sind ein wichtiger Bestandteil zur Umsetzung der Energiewende. Zinkionenbatterien stehen für diese und andere Anwendungen seit längerem im Fokus – bislang jedoch ohne kommerziellen Erfolg. Wie eine industrielle Umsetzung gelingen kann, wird nun nach Mitteilung des Fraunhofer IFAM in dem vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Forschungsprojekt Wässrige Zink-Ionen-Batterien ZIB2 untersucht. Zentrale Entwicklungsziele sind die Verwendung von unkritischen, kostengünstigen Materialien, eine Erhöhung des Wirkungsgrades und Verlängerung der Lebensdauer sowie die Anwendung industrieller Zelldesigns.

Wässrige Zinkionenbatterien (ZIB) ­werden gerne als grüne ­Energiespeichertechnologie bezeichnet, da ihre Zellchemie auf ausreichend verfügbarem Zink basiert. Die Batterien gelten als betriebssicher, umweltfreundlich, wirtschaftlich und es besteht keine Explo­sions- oder Brandgefahr, da Wasser ein wesentlicher Bestandteil der Zelle ist.

Obwohl ZIB-Systeme bereits eine hohe technologische Reife erreicht haben, konnte sich die Technologie im Vergleich zur Lithiumionen­batterie (LIB) bislang nicht über breite Anwendungsfelder durchsetzen. Im Zuge der immer größer werdenden Nachfrage nach nachhaltigen Speichertechnologien rücken Alternativsysteme wie ZIB jedoch immer mehr in den Fokus. Hierbei wird die marktreife Entwicklung der Zinkionentechnologie durch die stetig steigende Nachfrage an Energiespeichern, die zunehmende Rohstoffknappheit bei etablierten Systemen sowie dem Wunsch nach mehr Umweltfreundlichkeit und Nachhaltigkeit zusätzlich beschleunigt. Somit entwickelt sich die ZIB, gerade auf dem Gebiet der stationären Speicher, zu einer echten Alternative zur dominierenden LIB-Technologie.

Stand der Technik

Moderne Zinkionenkonzepte bestehen zum einen aus einer positiven Elektrode mit einer Vielzahl an möglichen Materialen wie beispielsweise Manganoxiden, Vanadiumoxiden oder Preußischblau-Analoga (PBA), wie zum Beispiel Kupferhexacyanoferrat, und zum anderen aus einer negativen Elektrode aus metallischem Zink. Hierzu kommt die Verwendung von Wasser als Elektrolyt, was die intrinsische Sicherheit des ZIB-Systems immens steigert.

Kosteneffizienz, Wirtschaftlichkeit, Sicherheit und Nachhaltigkeit sind heutzutage die treibenden Kräfte bei der Wahl eines geeigneten Batteriespeichers für stationäre Anwendungen, wie dem Speichern von überschüssiger Solar- oder Windenergie. Im Gegensatz zu etablierten Technologien, wie zum Beispiel LIB, erfüllen wässrige Zinkionensysteme die oben genannten kritischen Anforderungen des Markts vollkommen. Dank ihrer ­hohen Umweltfreundlichkeit, der verwendeten wäss­rigen, ungiftigen Elektrolyte und Materialien, der hohen spezifischen Leistung, die für Stromnetzanwendungen unerlässlich ist, sowie der geringen Kosten durch die gute Verfügbarkeit von Zink, stellen ZIB einen attraktiven Ansatz zur Lösung des aktuellen und zukünftigen Energiespeicherproblems dar.

Die im ZIB2 adressierten PBA-Kathodenmate­rialien zeichnen sich durch ihre niedrigen Energieverluste und durch ihre ­Fähigkeit schnell Laden und Entladen zu können aus. Dies macht sie für eine Anwendung im stationären Energiespeichersektor besonders relevant, da hier schnell auf eventuelle Lastspitzen im Stromnetz reagiert werden muss, um flächendeckende Stromausfälle vermeiden zu können. Ein weiterer Vorteil von PBA-
Kathodenmaterialien ist ihre einfache, skalierbare und kostengünstige Synthese. Im Zuge einer raschen Kommerzialisierung können somit entsprechend große Mengen an Elektroden hergestellt und zu zahlreichen Zellen weiterverarbeitet werden. Großer Nachteil der PBA-Systeme war bisher ihre kurze Lebensdauer von ausschließlich 300 Zyk­len (Lade- und Entladevorgang). Allerdings konnten Projektpartner des ZIB2-Konsortiums durch geschickte Veränderung der jeweiligen PBA-Struktur, die Lebensdauer der PBA-basierten ZIB bereits auf 800 Zyklen steigern. Im laufenden Projekt werden weitere Strategien verfolgt, um die Leistungsfähigkeit der ZIB-Technologie zu erhöhen und so einen schnellen Einsatz der entwickelten Zellen in realen Anwendungsszenarios zu ­ermöglichen.

Neue Materialien und Zellkonzepte

Um die Lebensdauer und den Wirkungsgrad der Zinkionenbatterien weiter zu erhöhen, synthetisieren, charakterisieren und optimieren die Projektpartner neuartige Materialien, sowohl für die Anode als auch für die Kathode. Zudem werden neue Elektrolytzusammensetzungen hergestellt und ausführlich untersucht. Darüber hinaus sollen die an den Elektroden auftretenden Alterungsmechanismen, die eine lange Lebensdauer der Batteriezellen beeinträchtigen können, identifiziert und analysiert werden. So können Anhaltspunkte für eine weitere Optimierung des Zusammenspiels der Elektroden mit dem Elektrolyten gefunden werden. Nach der Identifizierung von vielversprechenden Materialien und Materialkombinationen sollen verschiedene industrienahe Zelldesigns entwickelt, produziert und getestet werden, um das optimale Design für ein finales, serienreifes Produkt zu ermitteln. Hierbei wird auch auf unterschiedliche Herstellungsprozesse eingegangen, wobei zum Beispiel auch das Drucken von ZIB eine Rolle spielen soll. Abschließend unterziehen die Projektbeteiligten alle Ausgangsmaterialien, Zellkomponenten sowie Herstellungsprozesse einer ausführlichen ökonomischen und ökologischen Bewertung, um das Marktpotenzial dieser neuartigen Batterietechnologie in Gänze eruieren und die Wirtschaftlichkeit sowie Umweltfreundlichkeit des ZIB-Systems nachweisen zu können.

Text zum Titelbild: Aufbau und Entwicklung von Materialien und Komponenten für eine nachhaltige Zinkionen-Batteriezellfertigung (© Fraunhofer IFAM)

Relevante Unternehmen

Video(s) zum Thema

Werbepartner

Links zu diesem Artikel

Aus- und Weiterbildung

Top