Fachwörter-Lexikon

Das vollständige Fachwörter Lexikon ist nur für Abonnenten abrufbar. Sie sind nicht angemeldet, bitte loggen Sie sich ein oder schliessen Sie ein Abonnement ab.

Ionenaustauscher

Ionenaustauscher produzieren je nach Ausführung Wasser mit geringen Anteilen an mineralischen Bestandteilen bis hin zu vollentsalztem Wasser (VE-Wasser) höchster Qualität bei geringen Investitionskosten. Das durch gewonnene VE-Wasser wird aus Trinkwasser (Quell- oder Leitungswasser) gewonnen, indem die im Wasser vorkommenden Mineralien, wie Salze und Ionen, zurückgehalten werden. Als Rohwasser wird häufig Leitungswasser verwendet. Bei großen Bedarfsspitzen im industriellen Anwendungsbereich wird vielfach Oberflächen- oder Brunnenwasser eingesetzt.

Die Ionenaustauschtechnologie nutzt aus, dass die in Wasser befindlichen gelösten Stoffe chemische Bindungsreaktionen eingehen können. Im Trinkwasser befinden sich Salze in unterschiedlich hohen Konzentrationen. Diese bestehen aus Metallionen (Kationen) und einem Säurerest (Anionen). Zur Entfernung dieser Kationen und Anionen werden spezielle Ionenaustauscherharze eingesetzt. Hierbei handelt es sich um langkettige Moleküle mit Seitenketten, die Wasserstoffionen beziehungsweise Hydroxidionen besitzen. Diese können abgespalten werden. Die organischen Moleküle sind zu porösem Granulat (dem sogenannten Ionenaustauscherharz) verarbeitet und können von Wasser im Prinzip durchströmt werden. Dabei nehmen diese die im Wasser gelösten Kationen (z.B. Ca2+, Mg2+, Na+) und Anionen (z.B. Cl-, SO4-, NO3-) auf und geben dafür entsprechende Mengen an H+- und OH--Ionen an das Wasser ab. Das Ergebnis der Verfahrenstechnik Ionenaustausch ist damit vollentsalztes Wasser, also nahezu reines H2O.

Ein weiterer großer Vorteil der Ionenaustauscher ist die einfache Regenerierbarkeit. Durch entsprechende Beschickung mit Säure oder Lauge werden diese beim sogenannten Regenerierschritt wieder in den Ausgangszustand versetzt, erhalten also neue H+- und OH--Ionen und geben im Austausch dafür die aufgenommenen Kationen und Anionen wieder ab. Diese liegen dann in konzentrierter Form zur weiteren Bearbeitung vor. Je nach Größe der Ionenaustauscher wird die Regenerierung vom Anbieter als Dienstleistung oder vor Ort beim beziehungsweise vom Anwender durchgeführt.

Die Anwendungsbereiche der Ionenaustauscher richten sich nach der Zusammensetzung und dem Mengenbedarf an Wasser. Für den geringen bis mittleren Bedarf an VE-Wasser bieten sich Mischbettionenaustauscher an. Für große Bedarfsspitzen an VE-Wasser stehen Getrenntbettionenaustauscher zur Verfügen. Bei den Mischbettionenaustauschern Hierbei erfolgt die Regeneration der Kationenaustauscher und Anionenaustauscher vor Ort und je nach Anlagenauslegung häufig automatisch. Ein Parameter für die Messung der Qualität von VE-Wasser ist die elektrische Leitfähigkeit, die in Siemens pro cm (µS/cm) angegeben wird. Die Anforderungen an die VE-Wasser-Qualität können sehr unterschiedlich sein. So wird VE-Wasser in vielen industriellen Anwendungen eingesetzt. Beispielsweise als Wärmeträger im Kühlmittelkreislauf eines Kraftwerks, für Metallreinigungsanlagen, Luftbefeuchter, Spülbäder und Galvanische Bäder oder für die Versorgung von Dampfkesseln und Dampfturbinen.

Randschichthärteverfahren

Ziel ist es, dem Werkstoff eine harte und verschleißbeständige Oberfläche zu verleihen. Die chemische Zusammensetzung der Randschicht wird bei diesen Verfahren nicht verändert, wohl aber das Gefüge. Die oberflächennahe Schicht wird durch eine intensive Energieeinwirkung auf Härtetemperatur erwärmt (austenitisiert). Für die Verfahren des Randschichthärtens (außer Tauchhärten) ist es dabei kennzeichnend, dass mit hoher Geschwindigkeit erwärmt und unmittelbar anschließend abgeschreckt wird. Es muss eine ausreichende Austenitisierung sichergestellen werden. Das Randschichthärten kann für alle Eisenwerkstoffe, die einen Mindestkohlenstoffgehalt von 0,3% und eine Austenitumwandlung aufweisen, angewandt werden. Hierzu zählen beispielsweise die unlegierten Baustähle, Vergütungsstähle, Werkzeugstähle und der Stahlguss. Der maximale Kohlenstoffgehalt sollte 0,75 % jedoch nicht überschreiten, da sonst die Rissneigung sowie die Gefahr der Bildung von Restaustenit zunimmt.

Nach dem angewandten Wärmverfahren unterscheidet man folgende Randschichthärteverfahren: Tauchhärten, Flammhärten, Induktionshärten, Laserstrahlhärten, Elektronenstrahlhärten

Die maximal erreichbare Oberflächenhärte ist im Wesentlichen nur von der Menge des im Austenit gelösten Kohlenstoffs, also vom Kohlenstoffgehalt des Stahls sowie von den Austenitisierungsbedingungen (Härtetemperatur und Aufheizgeschwindigkeit) abhängig. Im Gegensatz zur Oberflächenhärte, die im Wesentlichen von der Menge des im Austenit gelösten Kohlenstoffs abhängt, nimmt mit zunehmendem Gehalt bestimmter Legierungselemente wie Mn, Cr, Mo, Ni und V die Härte in einer bestimmten Tiefe, die Einhärtungstiefe, zu.

Chromschichten – Rotationssymmetrische Teile

Bei Teilen, die in hohen Stückzahlen beschichtet werden (z.B. Kolbenstangen für Stoßdämpfer) ist es unter Einsatz der sogenannten Reaktortechnik möglich, rotationssymmetrische Teile mikrometergenau zu beschichten. Dadurch kann auf eine abschließende mechanisch Nachbearbeitung durch Schleifen oder Polieren verzichtet werden. Verfahrensbedingt erlaubt diese Technologie zudem eine sehr hohe Abscheidegeschwindigkeit und ist damit besonders wirtschaftlich. Die Abscheidegeschwindigkeit kann je nach Verfahren um den Faktor 10 und mehr erhöht werden. 

Das vollständige Fachwörter Lexikon ist nur für Abonnenten abrufbar. Sie sind nicht angemeldet, bitte loggen Sie sich ein oder schliessen Sie ein Abonnement ab.

Top