Aktuelle Hightlights

Rohstoffe für Energie- und Mobilitätstechnologien

Möglicher Zusatznutzen der Geothermie: Das oberrheinische Thermalwasser enthält relativ viel Lithium, das bislang importiert werden muss. (Foto: Florian Freundt, www.freundt.org)

Geologen untersuchen im Oberrheingraben Prozesse der Metallanreicherung in Geothermalwässern – DFG-Projekt erforscht potenzielle Wertstoffe in Tiefenwässern

Wasser aus der Tiefe des Oberrheingrabens lässt sich zur Wärme- und Stromgewinnung nutzen, ähnliche mineralreiche Wässer sind aber auch grundlegend für die Bildung von Erzvorkommen in der Region. Wissenschaftlerinnen und Wissenschaftler des Karlsruher Instituts für Technologie (KIT) untersuchen den Energie- und Stofftransport im Grabenbruchsystem, um die Bildung von Erzlagerstätten und das Entstehen unerwünschter mineralischer Ablagerungen in Geothermiekraftwerken exemplarisch zu verstehen.

Die Thermalquellen und Geothermiekraftwerke im Oberrheingebiet bieten der Forschung Gelegenheit, sowohl den Transport von Wärme als auch von Metallen für Erzlagerstätten zu untersuchen. Beide Prozesse, die bislang selten gemeinsam betrachtet werden, sollen in dem Projekt EMURG (Energy and Mass flux in the Upper Rhine Graben) in den nächsten drei Jahren ganzheitlich untersucht werden.

Anhand von Geothermalwässern, Ablagerungen in Rohren in Geothermiekraftwerken sowie Erzproben und Sintern aus dem Schwarzwald und dem Kraichgau erforschen die Wissenschaftlerinnen und Wissenschaftler heutige und fossile Energie- und Stoffströme in tieferen Schichten des Oberrheingrabens. Sie betrachten dafür die physikochemischen Eigenschaften des Wassers, messen dessen pH-Wert und Temperatur und untersuchen, ob es oxidiert oder reduziert ist. Zudem ermitteln sie seine Haupt- und Spurenbestandteile sowie seine isotopische Zusammensetzung. Wie Professor Jochen Kolb, Lehrstuhlinhaber für Geochemie und Lagerstättenkunde am Institut für Angewandte Geowissenschaften (AGW) des KIT, ausführt werden einige der Parameter genutzt, um zu verstehen, wo das Fluid – das neben Wasser als Hauptkomponente rund 100 bis 130 Gramm gelöste Feststoffe pro Liter enthält – herkommt, welchen Weg es genommen hat, und mit welchen Gesteinen die Fluide reagiert haben. Die Deutsche Forschungsgemeinschaft (DFG) fördert das Vorhaben drei Jahre lang durch die Finanzierung einer Doktorandenstelle und mit Sachmitteln.

Aus bisherigen Untersuchungen ist bekannt, so Prof. Kolb weiter, dass im Jura ähnliche Fluide wie jetzt im Oberrheingraben vorhanden waren. Ziel ist es, zu verstehen, ob in den hydrothermalen Systemen noch dieselben Prozesse ablaufen wie vor zirka 180 Millionen Jahren. Aufgrund der gewonnenen Erkenntnisse werden sich alle ähnlichen Systeme mit dem Oberrheingraben vergleichen lassen, so der Geologe.

Außerdem wollen die Wissenschaftlerinnen und Wissenschaftler genaueren Aufschluss darüber bekommen, wodurch die – Scalings genannten – unerwünschten Mineralanlagerungen an Rohren von Geothermieanlagen entstehen und wie sie sich verhindern lassen. Wegen der Ausfällungen und der Korrosion müssen die Rohre der Geothermiekraftwerke regelmäßig gewartet und ausgetauscht werden.

Technologiemetalle für Energie- und Mobilitätswende

Auch für die Rohstoffgewinnung der Zukunft ist das Verständnis der unterirdischen Wärme- und Stoffströme entscheidend. Das Team um Prof. Kolb will der Industrie Methoden zum Einschätzen des gegenwärtigen Potenzials von Lagerstätten an die Hand geben. Sie könnten dazu beitragen, für die Energie- und Mobilitätswende wichtige Rohstoffe wie Germanium, Gallium, Lithium, Indium, Cadmium oder Kobalt zu finden, die im Moment zu 100 % importiert werden. Das oberrheinische Thermalwasser enthält relativ viel Lithium; seine Gewinnung würde nach Aussage von Prof. Kolb der Geothermie einen zusätzlichen Nutzen geben.

Die Forschenden wollen anhand von Gesteins- und Fluidproben nachvollziehen, woher die jeweiligen Metalle stammen und wie groß die Ressource der begehrten Technologiemetalle im Oberrheingraben ist. Die Forschung am AGW ist in den Think Tank Industrielle Ressourcenstrategien am KIT eingebunden, der vom Land Baden-Württemberg und Industriepartnern unterstützt wird.

Möglichkeiten künftiger Rohstoffgewinnung durch das Betrachten hydrothermaler Systeme, die in der Erdgeschichte aktiv waren, stehen auch im Fokus von vier weiteren Forschungsprojekten des AGW, die die DFG mit Doktorandenstellen sowie Reise- und Sachkosten fördert. In Namibia und Südafrika erforschen die Wissenschaftlerinnen und Wissenschaftler exemplarisch Lagerstätten von Seltenen Erden, und innerhalb des DFG-Schwerpunktprogramms Dynamics of Ore Metals Enrichment – DOME betrachten sie die Entstehung von magmatischen Titan- und Zirkonerzen am Beispiel von Lagerstätten in Grönland und Russland sowie die Mobilität von Gold und anderen Metallen in Fluiden im Zusammenhang mit dem aktiven Vulkanismus des griechischen Archipels Santorini. Die DFG fördert die insgesamt fünf Projekte mit rund einer Million Euro.

Als Die Forschungsuniversität in der Helmholtz-Gemeinschaft schafft und vermittelt das KIT Wissen für Gesellschaft und Umwelt. Ziel ist es, zu den globalen Herausforderungen maßgebliche Beiträge in den Feldern Energie, Mobilität und Information zu leisten. Dazu arbeiten rund 9 300 Mitarbeiterinnen und Mitarbeiter auf einer breiten disziplinären Basis in Natur-, Ingenieur-, Wirtschafts- sowie Geistes- und Sozialwissenschaften zusammen. Seine 24 400 Studierenden bereitet das KIT durch ein forschungsorientiertes universitäres Studium auf verantwortungsvolle Aufgaben in Gesellschaft, Wirtschaft und Wissenschaft vor. Die Innovationstätigkeit am KIT schlägt die Brücke zwischen Erkenntnis und Anwendung zum gesellschaftlichen Nutzen, wirtschaftlichen Wohlstand und Erhalt unserer natürlichen Lebensgrundlagen. Das KIT ist eine der deutschen Exzellenzuniversitäten (Sandra Wiebe).

www.kit.edu