Material mit neuartigen Dehnungseigenschaften entwickelt
Metamaterialien sind künstlich entwickelte Materialien, die so in der Natur nicht vorkommen. Ihre Bausteine funktionieren wie Atome in herkömmlichen Materialien, haben aber besondere optische, elektrische oder magnetische Eigenschaften. Entscheidend für die Funktion ist die Wechselwirkung zwischen den Bausteinen: Bislang war diese meist nur mit unmittelbar benachbarten Bausteinen, also lokal möglich. Forschende des Karlsruher Instituts für Technologie (KIT) haben ein mechanisches Metamaterial entwickelt, mit dem sich diese Wechselwirkungen auch über größere Entfernungen im Material auslösen lassen. Das Material könnte Anwendung finden, wenn es um das Messen von Kräften oder das Überwachen von Statik geht.
Der Arbeitsgruppe von Professor Martin Wegener am Institut für Angewandte Physik (APH) des KIT ist es damit gelungen, eine Einschränkung in Metamaterialien zu überwinden. Hauptautor Dr. Yi Chen vergleicht dies mit der menschlichen Kommunikation und einem Effekt, den man aus dem Spiel Stille Post kennt: Kommuniziert man mit einem Menschen über einen Vermittler, kann am Ende etwas völlig anderes herauskommen als im direkten Gespräch mit dieser Person. Dieses Prinzip gelte auch für Metamaterialien, so Chen. Das von uns designte Material hat spezielle Strukturen (in der Abbildung rot). Durch diese können einzelne Bausteine nicht mehr nur über ihre Nachbarn mit weiter entfernten Bausteinen kommunizieren, sondern auch direkt mit allen anderen Bausteinen im Material.
Experimente an 3D-gedruckten mikroskopischen Proben
Diese Strukturen verleihen dem Material faszinierende Eigenschaften, beispielsweise ungewöhnliche Dehnungseigenschaften, so Co-Autor Ke Wang vom APH. Dies konnte das Team an mikrometergroßen Materialproben nachweisen, die es mit 3D-Laserdrucktechnologie herstellte, unter dem Mikroskop untersuchte und mit einer Kamera aufzeichnete. Dabei zeigte sich, dass sich ein eindimensionaler Strang (1D), der von einem Ende aus gezogen wurde, nicht gleichmäßig ausdehnte.
Anders als beispielsweise bei einem Gummiband, das sich bei Zug gleichmäßig dehnt, zeigte das Metamaterial an einigen Stellen sogar Stauchungen. Auch ließen sich kürzere Abschnitte des Metamaterials teilweise stärker dehnen als längere Abschnitte, auch wenn überall dieselbe Kraft angewendet wurde. Dieses ungewöhnliche Verhalten, dass einzelne Dehnungen und Kompressionen nur lokal auftreten, ist in herkömmlichen Materialien nicht möglich, so Jonathan Schneider vom APH, ebenfalls Co-Autor. Wir werden dies nun auch an zweidimensionalen (plattenartigen) Materialien und dreidimensionalen Materialien untersuchen.
Eine potenziell nützliche Eigenschaft könnte auch sein, dass das Metamaterial hochsensibel auf Belastungen reagiert. Je nachdem, an welchem Punkt im Material Kraft angewendet wird, kann dies zu völlig unterschiedlichen Dehnungsreaktionen auch an weiter entfernten Punkten führen. Bei einem herkömmlichen Material seien Reaktionen nur direkt am Punkt des Krafteinsatzes zu beobachten, so das Forschungsteam, während sich an entfernten Stellen im Material nur schwache oder vernachlässigbare Auswirkungen verfolgen lassen. Ein Material mit dieser Sensibilität könnte für Anwendungen wertvoll sein, bei denen Kräfte in größerem Maßstab gemessen werden sollen, beispielsweise bei der Überwachung von Gebäudeverformungen im Ingenieurwesen oder bei der Charakterisierung von Zellkräften in der biologischen Forschung.
Die Forschungsarbeit wurde durch das Exzellenzcluster 3D Matter Made to Order (3DMM2O) des KIT und der Universität Heidelberg unterstützt.
Originalpublikation: Yi Chen, Jonathan L.G. Schneider, Ke Wang, Philip Scott, Sebastian Kalt, Muamer Kadic, Martin Wegener: Anomalous frozen evanescent phonons, Nature Communications, 2024 DOI: 10.1038/s41467-024-52956-5
Aktuelle Onlineartikel
-
07. 11. 2024 Die Roboterhand lernt zu fühlen
-
07. 11. 2024 Mathematik im Grenzbereich – Neue Berechnungsmethode revolutioniert Simulation neuer Materialien
-
05. 11. 2024 Neuer Ansatz ebnet den Weg zur effizienten Aufnahme und Speicherung von Solarenergie
-
04. 11. 2024 Hightech-Folie gegen Eisbildung
-
02. 11. 2024 Spannungsrissbeständigkeit besser messbar
-
31. 10. 2024 Material mit neuartigen Dehnungseigenschaften entwickelt