Fachwörter-Lexikon
Das vollständige Fachwörter Lexikon ist nur für Abonnenten abrufbar. Sie sind nicht angemeldet, bitte loggen Sie sich ein oder schliessen Sie ein Abonnement ab.
Plasmaanodisation
Eine neue und äußerst interessante Variante des Anodisierens ist das Plasmaanodisieren beziehungsweise das Plasmakeramisieren. Mit hohen Energien und Spannungen über 100 V bilden sich an der Oberfläche lokale Plasmazonen mit kurzzeitig sehr hohen Strömen. Hier wird aus dem Aluminium das reine Oxid zum größten Teil in seiner stabilsten Kristallisationsform Aluminiumoxid beziehungsweise Korund erzeugt, der zu den härtesten fünf Stoffen zählt. Im plasmakeramischen Prozess entsteht Korund abhängig vom Verfahren in Form mikro- oder nanokristalliner Kristallite, welche in eine komplexe Keramikmatrix integriert sind und so als Oberfläche ihre herausragenden und einzigartigen Eigenschaften entwickeln können. Darin unterscheidet sich die plasmakeramische Schicht völlig von der klassischen Anodisationsschicht, die primär aus amorphem Aluminiumoxidhydrat besteht.
Durch Variation der Arbeitsparameter, angefangen von der Aufnahme des zu beschichtenden Bauteils über die Elektrolytzusammensetzung bis zur Steuerung der Energiezufuhr, kann das entstehende Oxid hinsichtlich seiner Konsistenz, Morphologie und Größe beeinflusst werden. Zudem wird die interpartikuläre Verbindung ebenfalls durch gezielt gesetzte Rahmenbedingungen kontrolliert aufgebaut. Im bestmöglichen Fall entstehen nanokeramische Oberflächen mit extrem feiner und gleichmäßiger Verteilung. Nanostrukturierte Schichten sind weitaus kompakter und dichter und übertreffen mikrokeramische Oberflächen in puncto Abriebfestigkeit, mechanische Beständigkeit und Korrosionswiderstand bei weitem.
Im Gegensatz zur anodisierten Oxidschicht ist die plasmakeramische Oberfläche hydratfrei. Auch bei Erwärmung auf mehrere hundert Grad Celsius ändert die Plasmakeramik ihre Eigenschaften nicht. Die Temperaturbeständigkeit des Bauteils wird nur durch das Substrat limitiert.
Unlegierte Baustähle
Die unlegierten Baustähle nehmen mit einem Anteil von etwa 70 % an der Weltstahlproduktion den größten Umfang ein. Sie werden überwiegend im kaltumgeformten Zustand oder in Verbindung mit einer Spannungsarmglühung im warmgeformten (warmgewalzten) Zustand angeboten und finden vielfältige Anwendungen im Maschinenbau, Fahrzeugbau, Hoch-, Tief-, Brücken- und Hallenbau, Behälterbau und in der Schiffs- und Offshore Technik.
Die unlegierten Baustähle gehören zur Hauptgüteklasse der unlegierten Qualitätsstähle. Sie werden hinsichtlich ihrer Festigkeit beziehungsweise Schweißeignung und Sprödbruchsicherheit ausgewählt. Mit ihrem geringen Kohlenstoffgehalt und ihrem ferritisch perlitisches Gefüge unterscheiden sie sich in ihren mechanischen Eigenschaften und sind nach DIN EN 10025-2 genormt. Die wichtigste mechanische Größe ist die zu gewährleistete Mindeststreckgrenze. Ihre Zugfestigkeit liegt im Bereich unter 500 N/mm2. Wetterfeste Sorten enthält die DIN EN 10025-5 (z. B. S235J2).
Verschleißschutz – verschiedene Verfahren
In vielen Anwendungen wie beispielsweise bei Motoren oder beweglichen Maschinenelementen sind die Oberflächen von Bauteilen einer hohen Reibung ausgesetzt. Der Verschleiß der Oberflächen kann durch die Auftragung von Schichten unterschiedlicher Art verhindert werden. Dabei steht die Verteilung der Aufgaben bei der Auswahl der verwendeten Materialien im Vordergrund: Das Grundmaterial stellt die mechanische Festigkeit und Form, während die Oberfläche beziehungsweise die Schicht den Schutz gegen Verschleiß, Korrosion und/oder Oxidation übernimmt.
Die Effizienz von modernen Verbrennungsmotoren für Fahrzeuge, insbesondere mit Hochleistungsmotoren verwenden für Kolben und Zylindern derartige Schichtsysteme. Geeignet als Schutz gegen Verschleiß sind insbesondere Chrom- und Nickel- beziehungsweise Nickeldispersionsschichten (mit Hartstoffen wie Siliziumcarbid). Die Schichten werden hierfür in Dicken zwischen 10 µm und etwa 40 µm abgeschieden. Zur Einhaltung der exakten geometrischen Form kommen einmal Honverfahren zum Einsatz. Neuere Entwicklungen arbeiten mit besonderen, angepassten Anodengeometrien, um die Stromdichtunterschiede sowie die daraus resultierenden Abweichung der Schichtdicke an Kanten zu vermeiden.
Während Kolben für Motoren wie klassische Einzelteile in einem Galvanikverfahren auf Gestellen behandelt werden, stehen für die Zylinder in den Motorblöcken Spezialanlagen zur Verfügung, bei denen nur der Zylinderbereich von Elektrolyt durchströmt wird, während der übrige Motorblock nicht mit den galvanischen Medien in Berührung kommt. Die hohen Strömungen erlauben auch die Anwendung von höheren Stromdichten, so dass die Abscheidegeschwindigkeiten auf einige Mikrometer pro Minute gesteigert werden können.
Vergleichbare Schichtsysteme können sowohl auf Stahl als auch auf Aluminium aufgebracht werden. Dadurch trägt Aluminium auch bei Motoren und sonstigen Teilen in Fahrzeugen zur Einsparung von Gewicht bei.